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1. Introduction

The study of possible space-time backgrounds of string theories has been an active field

of research for almost 25 years. A specific subclass of backgrounds admit a geometrical

interpretation in which the space-time manifold is the product space

Md × Y10−d , (1.1)

where Md is an infinitely extended d-dimensional manifold with Minkowskian signature

while Y10−d is a (10−d)-dimensional compact manifold with Euclidean signature. In stan-

dard compactifications, Y is constrained to be a Calabi-Yau manifold whose holonomy

controls the amount of unbroken supersymmetry present in the string background. More

generally, one can turn on background fluxes for various p-form fields in the compact
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directions, and then Y is no longer constrained to be Ricci-flat. Such ‘generalized’ com-

pactifications have been studied intensively in recent years [1].

It has been observed early on that these generalized compactifications can be discussed

in terms of ‘manifolds with G-structure’ [2]. Such manifolds admit a globally defined spinor

(or tensor) which is left invariant by the subgroup G of the structure group. Generically

such manifolds have torsion and they can be characterized by a set of non-vanishing torsion

classes [3, 4]. In string compactifications the number of invariant spinors is directly related

to the number of supersymmetries present in the background. Calabi-Yau manifolds are a

specific subclass of manifolds with G-structure where the torsion vanishes and the invariant

spinor is covariantly constant with respect to the Levi-Civita connection.

String theories have the feature that their space-time backgrounds can be dual to each

other. This is firmly established for dualities which hold in string perturbation theory.

For example type IIA string theory compactified on a Calabi-Yau threefold Y coincides

with type IIB string theory compactified on the mirror Calabi-Yau Ỹ . For dualities which

involve the dilaton (the string coupling) in a non-trivial way, so far there is only (strong)

evidence for the validity of the duality. An example of such a duality is the heterotic

string compactified on K3×T 2, which is believed to be identical to type IIA string theory

compactified on a K3-fibred Calabi-Yau threefold [5, 6].

An interesting question is the fate of these dualities for generalized compactifications. It

has been shown in refs. [7 – 10] that mirror symmetry continues to hold in the supergravity

limit for compactifications on manifolds with SU(3) × SU(3) structure. On the other

hand, for the heterotic-type II duality mentioned above only partial results have been

obtained so far [11, 12]. More specifically it has been shown in [12] that in the supergravity

limit a particular class of SU(3)× SU(3)-structure compactifications of type IIA is dual to

the heterotic string compactified on K3 × T 2 with a specific choice of background fluxes.

However, for some of the fluxes which can be turned on in the heterotic theory no dual

type IIA compactification could be identified. These are fluxes which result in a gauged

N = 2 supergravity with vector multiplets carrying a non-Abelian charge.

Let us review this in a little more detail. At the level of the low-energy effective

supergravity the heterotic — type II duality corresponds to a duality between N = 2

supergravities in d = 4. Such supergravities can be coupled to N = 2 vector-, hyper-

and tensor-multiplets.1 Turning on background fluxes or compactifying on manifolds with

G-structure correspond to the deformation of an ungauged supergravity into a gauged or

massive supergravity, with the flux and torsion playing the role of non-trivial gauge charges

or mass parameters. For SU(3)×SU(3)-structure compactifications of type II it was shown

in [7, 9, 10, 13 – 16] that only gauged supergravities with charged hypermultiplets or massive

tensor multiplets appear. It was left as a puzzling feature of such compactifications that

charged vector multiplets could not be obtained. On the other hand in the heterotic K3×T 2

compactification, non-Abelian gauge symmetries do appear precisely when fluxes on the

T 2 are turned on [17].

1A tensor multiplet can be dualized to a hypermultiplet or a vector multiplet, depending on the mass

of the tensor.
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One of the goals of this paper is to resolve this puzzle. We find that non-Abelian gauge

symmetries also appear on the type IIA side if instead of SU(3)×SU(3)-structure compacti-

fications of type II one considers compactifications of M-theory on 7-dimensional manifolds

with SU(3) structure. We argue that these are the duals of the heterotic compactifications

with fluxes on the T 2. These are the main results of our paper.

In this paper we do not attempt to work out the low-energy effective action for a

generic 7-dimensional SU(3)-structure manifold, but instead focus on a very specific sub-

class of SU(3)-structure manifolds which lead to non-Abelian gauge symmetries. More

specifically, we consider 7-dimensional manifolds which can be viewed as a non-trivial fi-

bration of a Calabi-Yau threefold CY3 over a circle S1. Furthermore, we impose that only

the second cohomology H(1,1) of CY3 is twisted when going around the S1, but that the

third cohomology H3 (which governs the hypermultiplet sector) is left unchanged. This

constraint leads to a hypermultiplet sector which is entirely determined by H3(CY3) and

therefore can be safely neglected for the purpose of this paper. It is precisely the twisted

H(1,1) cohomology which induces the non-Abelian structure into the theory. When CY3 is

K3-fibred and M-theory on CY3 is dual to heterotic string theory on K3 × S1, twists of

this type provide the dual of the T 2 fluxes on the heterotic side.

Let us describe the twisting in slightly more detail. Consistency requires that after go-

ing around the circle which takes us from 5 to 4 dimensions, H(1,1) is rotated by an element

of the U-duality group [18, 19] of the five-dimensional theory which corresponds to M-theory

compactified on CY3 or the dual heterotic theory on K3×S1. In this case we have Γ(Z) =

SO(1, h(1,1)−2,Z), which on the heterotic side is just the T-duality group. On the M-theory

side this symmetry exists precisely for the dual K3-fibred Calabi-Yau manifolds [6].

In four dimensions the result is the appearance of non-Abelian gauge symmetries as

follows. The base of the K3-fibration is a P1 whose volume is identified with the four

dimensional heterotic dilaton. Heterotic weak coupling corresponds to a large P1-base, and

in that limit the low-energy limits of both theories have a SO(2, h(1,1) − 1,R) symmetry

in four dimensions. In this case, we can describe the twisting in the language of four

dimensional supergravity as gauging2 an isometry inside SO(2, h(1,1) − 1,R). This makes

the four-dimensional gauge transformations non-commuting (non-Abelian).

At a generic point in field space, the non-Abelian gauge symmetry is spontaneously

broken, giving a mass to some of the gauge bosons. We find that on the M-theory side

the gauge boson masses are inversely proportional to the radius of the M-theory circle. In

order to consistently keep these gauge bosons in the low energy effective action we need to

require that these masses are smaller than the Kaluza-Klein masses of the CY3. This means

that the M-theory circle has to be larger than the radii of the Calabi-Yau, which in turn

forces us into the M-theory regime of type IIA string theory. This is the reason that the

non-Abelian structure is not visible in SU(3)× SU(3) compactifications of type II theories.

Let us stress that the flux on the heterotic side, and similarly the non-trivial mon-

odromy in the M-theory compactification, lead to a non-trivial potential on the moduli

2By gauging we mean that isometries of the scalar manifold are mixed into the gauge transformations,

and not that new gauge fields are introduced.
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space. We do not discuss here the stabilization of these moduli, which can be accomplished

by adding additional ingredients. Instead, we just compute and compare the resulting low-

energy effective actions, without attempting to solve their equations of motion.

The paper is organized as follows. In section 2 we discuss the Kaluza-Klein (KK) re-

duction of M-theory on a seven-dimensional manifold with SU(3) structure. As a warm-up,

we first recall in section 2.1 the properties of the five-dimensional background correspond-

ing to the reduction of M-theory on a Calabi-Yau threefold. This sets the stage for the

specific S1-fibration we consider in section 2.2. In section 2.3 we derive the low energy

effective supergravity by a Kaluza-Klein reduction from 11 to 4 dimensions, paying special

attention to the gauging of the vector multiplets. In section 2.4 we rewrite the effective

action in a form which shows the consistency with N = 2 gauged supergravity. In sec-

tion 2.5 we consider the specific case of a K3-fibred Calabi-Yau threefold which is the class

of backgrounds dual to the heterotic string. Most of our explicit computations are done

in the limit in which the scalar moduli space has a continuous isometry, as this makes the

computations simpler; in section 2.6 we discuss what happens when we go away from this

limit. In section 3 we turn to the heterotic string compactified on K3 × T 2 and start by

recalling a few generic properties of such backgrounds in section 3.1. We then compare

the mass-scales in the dual backgrounds in section 3.2, showing the necessity to go to

the M-theory regime on the type II side when we turn on heterotic fluxes on the T 2. In

section 3.3 we argue that also the heterotic fluxes can be viewed as a monodromy in the

T-duality group. In section 3.4 we then recall the heterotic effective action as computed

in [17]. Finally, in section 3.5 we compare the effective actions on both sides and show

that for a subset of torsion parameters they perfectly match. For the convenience of the

reader we briefly recall the vector multiplet sector of (gauged) N = 2 supergravity in ap-

pendix A. Additional details of the vector multiplets in heterotic string compactifications

are assembled in appendix B.

2. M-theory compactifications on manifolds with SU(3) structure

In this section we compactify M-theory on seven-dimensional manifolds with SU(3) struc-

ture. By construction this leads to an N = 2 supersymmetric effective theory in d = 4.

However, as already explained in the introduction, we do not consider the most general

manifolds with SU(3) structure but instead focus on a particular subclass of manifolds

which lead to a low-energy supergravity with non-Abelian vector multiplets. For simplicity

we further insist that the moduli space of the hypermultiplets coincides with that of a

CY3 × S1 compactification, where all scalars in hypermultiplets are gauge neutral. Thus,

we do not pay attention to the hypermultiplets but only concentrate on the vector multiplet

sector. The gaugings which appear in the hypermultiplet sector in general compactifica-

tions of M-theory on manifolds with SU(3) structure and the corresponding prepotentials

were derived in [20, 21], but a detailed analysis in the vector multiplet sector of these

compactifications was not considered so far.

We begin with a short review of the compactification of M-theory on six dimensional

Calabi-Yau manifolds, and then proceed to the seven dimensional case.
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2.1 M-theory compactifications on Calabi-Yau threefolds

In order to set the stage let us briefly recall the structure of the five dimensional N = 2

supergravity3 which arises from compactifying M-theory on Calabi-Yau threefolds. Our

discussion is based on references [22 – 24] but since we are only interested in the vector

multiplet sector we (largely) ignore the hypermultiplets in this section.

The bosonic spectrum of eleven-dimensional supergravity is particularly simple and

consists only of the metric ĜMN and a three-form potential Ĉ3. (We use hats ˆ in order to

denote the eleven-dimensional quantities.) The eleven-dimensional action for these fields

is given by (setting the eleven dimensional Newton’s constant to one)

S11 =
1

2

∫ [

R̂ ∗ 1 − 1

2
F̂4 ∧ ∗F̂4 −

1

6
F̂4 ∧ F̂4 ∧ Ĉ3

]

, (2.1)

where F̂4 = dĈ3 is the field strength of the three-form potential Ĉ3.

The five-dimensional vector fields arise from expanding Ĉ3 in terms of harmonic (1, 1)-

forms on the Calabi-Yau. More precisely we choose a basis ωi of H(1,1)(CY3) and expand

according to

Ĉ3 = Ai ∧ ωi + · · · , i = 1, . . . , h(1,1) , (2.2)

where the . . . indicate further terms corresponding to scalar fields in hypermultiplets. One

of the vector fields Ai is identified with the graviphoton while the other (h(1,1) − 1) are

members of vector multiplets. Their (bosonic) superpartners correspond to Kähler defor-

mations of the Calabi-Yau metric. More precisely, one expands also the Kähler form J in

terms of the basis ωi

J = νi ωi , (2.3)

such that the νi parameterize the Kähler deformations. In the five-dimensional low energy

effective theory the νi appear as scalar fields. However, one of the Kähler moduli, the

overall volume K, is not part of any vector multiplet but instead is a member of the

universal hypermultiplet. The remaining (h(1,1) − 1) moduli are the scalar fields in vector

multiplets.

Inserting (2.2) and (2.3) into (2.1) and integrating over the Calabi-Yau manifold re-

sults in the five-dimensional N = 2 effective action (for the bosonic fields that are not in

hypermultiplets)4

S5 =

∫ [

1

2
R5 ∗ 1 − g

(5)
αβ dϕα ∧ ∗dϕβ − 1

4
gij

∣

∣

∣

∣

K=1

F i ∧ ∗F j − 1

12
KijkF

i ∧ F j ∧ Ak

]

, (2.4)

where F i = dAi and Kijk are intersection numbers of the Calabi-Yau defined by the integral

Kijk =

∫

CY3

ωi ∧ ωj ∧ ωk . (2.5)

3By N = 2 we mean the minimal amount of supersymmetry possible in five dimensions, which reduces

to N = 2 in four dimensions.
4Here we only give the final result and refer the reader for further details to [23, 24].
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To explain the other couplings in this action we need to be more explicit about the

separation of the overall volume modulus K from the other Kähler moduli. Since the

volume modulus is part of the universal hypermultiplet, it should not mix with the other

quantities describing the vector multiplet moduli space. Therefore, all the terms in the

vector multiplet action (2.4) are evaluated on a hypersurface of constant K which we

choose as K = 1. This is precisely the meaning of the matrix of gauge couplings gij |K=1 in

the action (2.4), which is equal to the metric on the Kähler moduli space [25]

gij =
1

4K

∫

CY3

ωi ∧ ∗ωj = − 1

4K

(

Kij −
KiKj

4K

)

, (2.6)

evaluated on the hypersurface K = 1.5 Here the Calabi-Yau volume, K, is defined as

K =
1

6

∫

CY3

J ∧ J ∧ J =
1

6
Kijkν

iνjνk , (2.7)

and we also abbreviated

Ki =

∫

CY3

ωi ∧ J ∧ J = Kijkν
jνk ,

Kij =

∫

CY3

ωi ∧ ωj ∧ J = Kijkν
k .

(2.8)

Finally let us discuss the kinetic terms of the scalar fields in the action (2.4). Let us

denote by ϕα the (h(1,1) − 1) scalar fields which parameterize the hypersurface K = 1. The

metric g
(5)
αβ which appears in (2.4) is therefore the induced metric on that hypersurface,

which is given by [22, 24]

g
(5)
αβ = gij

∂νi

∂ϕα

∂νj

∂ϕβ

∣

∣

K=1
, α, β = 1, . . . , h(1,1) − 1 . (2.9)

For the purpose of our paper it is of interest to also discuss possible (global) isometries

of the moduli space of the scalars in the vector multiplets. Following [22] let us consider

the infinitesimal linear transformations

νi → νi − ǫM i
jν

j , (2.10)

where the M i
j are constant and elements of a Lie Algebra. Since the space of scalar fields

in vector multiplets is defined on the hypersurface K = 1 the transformation (2.10) is

constrained by the requirement

δK = 0 . (2.11)

Inserting (2.10) into (2.7) one arrives at [22]

M l
iKjkl + M l

jKkil + M l
kKijl = 0 , (2.12)

5The same metric gij will also appear in the four-dimensional effective action which we discuss in the

next section. In this case it is the metric on a complex special Kähler manifold, since in d = 4 the scalar

fields in the vector multiplets are complex and furthermore they necessarily span a special Kähler manifold.
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which states that Kijk is an invariant tensor of the Lie Algebra. Inserting (2.10) into (2.8)

and (2.6) one also computes

δKij = ǫMk
i Kkj + ǫMk

j Kik , δKi = ǫM j
i Kj , (2.13)

and

δgij = ǫMk
i gkj + ǫMk

j gik . (2.14)

By assigning the transformation law (2.10) also to the Ai one immediately sees the in-

variance of the last two terms in the action (2.4). The invariance of the second term in (2.4)

is less obvious but has been established in [22]. A quick intuitive argument goes as follows.

The full kinetic term on the Calabi-Yau moduli space of Kähler deformations gij∂µνi∂µνj

is clearly invariant under (2.10) and (2.14). Since the second term in (2.4) differs from the

one above by a kinetic term for the volume modulus ∂µK∂µK, which is trivially invariant

due to (2.11), it follows that the the kinetic term for the Kähler moduli parameterizing

the hypersurface K = 1 is also invariant under the transformation (2.10). Therefore the

action (2.4) has a global symmetry for any M i
j which solves the constraint (2.12).

For generic Kijk, eq. (2.12) has no solutions, or in other words, a generic Kijk is not

an invariant tensor of any Lie Algebra. Let us therefore turn to a specific situation where

global isometries do arise, which will be used in the next subsections. The case that we will

discuss in detail is the special class of K3-fibred Calabi-Yau threefolds (over a P1 base) [6].

If we denote by ν1 the volume of the base, then for this class of manifolds the intersection

numbers obey K11i = 0. Furthermore, if the P1 is taken large, i.e. ν1 ≫ νi6=1 for fixed K,

then the moduli space is the scalar manifold [22 – 24]

MV = SO(1, 1) × SO(1, h(1,1) − 2)

SO(h(1,1) − 2)
. (2.15)

The isometry group of this space is SO(1, 1)×SO(1, h(1,1)−2) and in section 2.5 we discuss

in detail the corresponding solutions of (2.12). A discrete subgroup of this isometry group,

SO(1, h(1,1) − 2,Z), is known as the U-duality group which is an exact symmetry of these

compactifications.

2.2 Seven dimensional manifolds with SU(3) structure

In the previous section we briefly reviewed Calabi-Yau compactifications of M-theory. Let

us now turn to compactifications on seven-dimensional manifolds X7 with SU(3) structure.

They can be characterized by a triplet of globally defined and SU(3)-invariant tensors

{V, J,Ω}, where V is a one-form, J is a two-form and Ω is a three-form [2, 26]. This triplet

is constrained to satisfy the compatibility relations

J ∧ J ∧ J =
3i

4
Ω ∧ Ω̄ ,

Ω ∧ J = V yJ = V yΩ = 0 ,
(2.16)

where y denotes contraction of indices.

– 7 –
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Due to the existence of the one-form V , one can define an almost product structure,

in that locally the metric can be split as

ds2
7(y, z) = ds2

6(y, z) + V 2(y, z) , (2.17)

where y are the coordinates of the six-dimensional component Y6 and z is the coordinate

of the one-dimensional component. On Y6 the two-form J defines an almost complex

structure (by raising one index with the metric) and it is a (1, 1)-tensor with respect to it.

Similarly Ω is a (3, 0) form, and together they define the standard SU(3) structure on a

six-dimensional space.

The manifold X7 can be characterized by the non-vanishing intrinsic torsion classes.

They are defined by dV, dJ, and dΩ, and can be decomposed into irreducible SU(3) rep-

resentations. One finds 13 torsion classes denoted R, c1,2, V1,2,3, W1,2, A1,2, T and S1,2

in [26], defined by

dV = RJ + W̄1yΩ + W1yΩ̄ + A1 + V ∧ V1 ,

dJ =
2i

3

(

c1Ω − c̄1Ω̄
)

+ J ∧ V2 + S1 + V ∧
[

1

3
(c2 + c̄2) J + W̄2yΩ + W2yΩ̄ + A2

]

,

dΩ = c1J ∧ J + J ∧ T + Ω ∧ V3 + V ∧ [c2Ω − 2J ∧ W2 + S2] . (2.18)

As we already stated we do not compactify on generic SU(3) structure manifolds with

all torsion classes non-zero. Instead we focus on manifolds which can be viewed as Calabi-

Yau threefolds CY3 fibred over a circle S1. With these specifications our setup is closely

related to the case of a six-dimensional torus T 6 fibred over a circle. Such backgrounds

were discussed in detail in [18, 19] and in the following we can draw on their results.

We parameterize the S1 direction by the coordinate z ∈ [0, 1), while the radius of the

circle is given by the value of the dilaton eφ, where V = eφdz. We further constrain the

fibration such that when going around the S1 only the second cohomology H(1,1)(CY3) is

twisted by a matrix γ, while the third cohomology H3(CY3) is unaffected. In this way we

ensure that the hypermultiplet sector, which is governed by H3(CY3), coincides with that

of a CY3 × S1 compactification. On the other hand, as we saw in the previous section, the

vector multiplets are determined by H(1,1)(CY3) and hence they do feel the twisting.

As in the previous section we denote the elements of H(1,1) by ωi but now they also

depend on the circle coordinate z, or in other words we have a set of ωi(y, z). However, the

structure of the fibration is not arbitrary but constrained by a consistency condition. If we

choose a specific basis at (say) z = 0, it rotates as we move in the z direction. After a full

circle, the ωi must come back to an equivalent theory, i.e., the 5 dimensional theory returns

to itself up to a discrete U-duality transformation [18].6 We already briefly discussed the

U-duality group Γ(Z) of M-theory compactified on CY3 at the end of the last subsection

and here it appears as the group of monodromies as we go around the circle7

ωi → γj
i ωj , γi

j ∈ Γ(Z) . (2.19)

6By U-duality we broadly refer to the group of discrete gauge transformations of the theory. We implicitly

assume that all discrete global symmetries are actually gauged [27].
7In the last section we noted that for compactifications which have a heterotic dual the U-duality group

is Γ(Z) = SO(1, h(1,1) − 2,Z), but the analysis of this section holds for arbitrary Γ(Z).
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In principle, only this global information exists. However, it is convenient to choose

an infinitesimal form of this relation by twisting the basis ωi by a constant matrix, M i
j , in

the continuous group Γ(R) as we go along the circle. In this case we write

γ = eM , M ∈ Γ(R) , (2.20)

and the infinitesimal version of (2.19) becomes

ωi(y, z + ǫ) = ωi(y, z) + ǫM j
i ωj(y, z) . (2.21)

Since on the Calabi-Yau slice the ωi continue to be harmonic (and therefore closed), (2.21)

can also be expressed by the differential relation

dωi = M j
i ωj ∧ dz . (2.22)

Equations (2.21) and (2.22) hold whenever the monodromy is evenly distributed along the

S1. This turns out to be useful for carrying out a KK reduction even when there is no

continuous isometry. In this case (2.21) will in general not be a solution of the equations of

motion, but it is still a useful ansatz for analyzing the compactification. A specific example

where this ansatz gives a solution arises when we consider degenerations of the Calabi-Yau

compactification in which a continuous version of the U-duality appears as an approximate

global symmetry Γ(R). As we discussed at the end of section 2.1 this situation occurs,

for example, when the base in the K3-fibred CY3 is large. In this case the matrix M

satisfies (2.12), and (2.21) expresses a translation invariance along the S1.

However, generically the full theory does not have the continuous symmetry and the

only real information is the global data in the monodromy γ. The approach that we

will take is first to discuss the situation with a continuous symmetry, obtain a quantitative

understanding of what this process of twisting does, and afterwards indicate (in section 2.6)

why going away from this limit does not change the qualitative picture.

Let us define the Calabi-Yau intersection numbers exactly as in (2.5), but now with

z-dependent ωi(y, z). In this case the Kijk can a priori also be z-dependent. However,

inserting (2.21) into (2.5), we see that precisely when there is an isometry the z-dependence

cancels out due to (2.12). Note that the fact that the same matrix M j
i appears in (2.12)

and (2.21) establishes the connection between an isometry in the space-time effective theory

and the translational symmetry of the fibration of the (1, 1)-forms along the S1-circle.

In the Kaluza-Klein reduction which we perform in the next section we encounter the

seven-dimensional integral

K̂ijk =

∫

X7

ωi ∧ ωj ∧ ωk ∧ dz , (2.23)

which are the intersection numbers defined on the entire X7. They coincide with the Kijk

precisely when (2.12) holds. In this case the Kijk are z-independent, and thus the integral

in (2.23) trivially factorizes. Note that the condition (2.12) also arises in this case from

the requirement of global consistency of (2.22)
∫

X7

d(ωi ∧ ωj ∧ ωk) = 0 . (2.24)
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It is also useful to note that all the other Calabi-Yau moduli space quantities defined

in equations (2.6), (2.7) and (2.8) have, due to (2.12), similar definitions in terms of seven-

dimensional integrals. In particular the Calabi-Yau volume can also be defined as

K =
1

6

∫

X7

J ∧ J ∧ J ∧ dz . (2.25)

The volume of the full seven-dimensional manifold X7 differs from this one by a dilaton

factor, which, when the dilaton is independent of the X7 coordinates is equal to

K̂ =
1

6

∫

X7

J ∧ J ∧ J ∧ V = eφK . (2.26)

In analogy with (2.3) we expand J according to

J = vi ωi(y, z) , (2.27)

where the vi are again constant but now there is a z-dependence in ωi. The vi will appear

as scalar fields in the four-dimensional effective action. Note that J is not invariant under

translation in the z-direction, but it comes back to itself when we go all the way around the

circle. This follows from the fact that we identify the manifold under z → z + 1 together

with (2.19). As a consequence J is globally defined on X7.

As we will see in the next subsection, it is the z-dependence of the ωi in (2.27) which

generates mass terms for the fields vi in the four-dimensional effective action. Let us note

that this can also be seen from a Scherk-Schwarz point of view [28] where one first compact-

ifies to five dimensions on Calabi-Yau manifolds as in the previous section and then, in the

subsequent compactification to four dimensions, gives the five-dimensional scalar fields νi a

monodromy as one moves around the circle such that their z-dependence is given by νi(z+

ǫ) = νi(z) + ǫM i
j νj(z). Thus the relation between νi and vi is simply νi(z) = (ezM )ij vj .

Inserting eq. (2.27) into eq. (2.25) and using eq. (2.23) and K̂ijk = Kijk we obtain

K = 1
6Kijkv

ivjvk exactly as in (2.7), but now in terms of the parameters vi instead of νi.

Similarly, the metric on the moduli space of Kähler deformations can be defined as

gij =
1

4K

∫

X7

ωi ∧ ∗ωj , (2.28)

with no dilaton prefactor, which is in agreement with the metric Ansatz (2.31) we shall

consider in the next section. One can show that it coincides with the metric given in

eq. (2.6) with the replacement νi → vi in (2.7) and (2.8).

Before we turn to the details of the KK-reduction let us determine the non-trivial

torsion classes in (2.18) for the fibration characterized by eq. (2.21) or equivalently by

eq. (2.22). Using the expansion (2.27) with the forms ωi satisfying (2.22) we find

dJ = viM j
i ωj ∧ dz , (2.29)

which shows that the M j
i parameterize the non-vanishing intrinsic torsion. Comparison

with (2.18) reveals that the only torsion classes which can be non-trivial are A2 and Re c2.
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Actually, for the case at hand, it can be shown that Re c2 vanishes and the only torsion

class which is present is A2. This can be seen by writing (2.29) in components and con-

tracting with Jmn. Using the SU(3) structure consistency relation VmJmn = 0, (2.16), and

the fact that A2 in (2.29) is primitive, i.e. (A2)mnJmn = 0, leaves us with the following

relation for Re c2

Re c2 ∼ viM j
i (ωj)mnJmn . (2.30)

For Calabi-Yau manifolds, the contraction of the (1, 1) forms ωj with J was computed

in [25] and shown to be proportional to Kjklv
kvl. Inserting this into the above equation,

the vanishing of the torsion class Re c2 is simply a consequence of the constraint (2.12).

Note that for M = 0 the two-form J is closed, the fibration is trivial and X7 is the product

manifold CY3 × S1.

2.3 Kaluza-Klein reduction of M-theory on X7

We can now proceed with one of the main parts of this paper, namely the compactification

of M-theory, or rather eleven-dimensional supergravity, on seven-dimensional manifolds

with SU(3) structure. As explained before, we concentrate on the vector multiplet sector

and ignore the hypermultiplets in our analysis.

The starting point is the eleven-dimensional action (2.1). Since on seven-dimensional

manifolds with SU(3) structure we can define an almost product structure we consider the

following Ansatz for the metric

GMN =







e4φ/3
(

1
KGµν + A0

µA0
ν

)

0 −e4φ/3A0
µ

0 e−2φ/3Gmn 0

−e4φ/3A0
ν 0 e4φ/3






, (2.31)

where Gµν denotes the 4d metric, Gmn is the metric on the Calabi-Yau manifold, A0
µ is the

4d graviphoton and φ the dilaton.8 The scalar fields arising from the Calabi-Yau metric

correspond to the deformations of J which we denoted by vi in (2.27), as well as the

deformations of Ω. The dilaton factors are chosen in such a way that we end up in the

four dimensional Einstein frame. The factor 1/K – with K defined in (2.25) — in front of

the four-dimensional metric has been introduced to account for the additional Calabi-Yau

volume factor which appears in front of the Einstein-Hilbert term after performing the

integral over the internal manifold.

Next we expand the three-form potential according to

Ĉ3 = C̃3 + B ∧ dz + Ãi ∧ ωi + biωi ∧ dz + · · · , (2.32)

where C̃3 is a three-form in four dimensions, B is a two-form, Ãi are vector fields and bi

are scalars. The . . . stand for additional scalar fields that arise when Ĉ3 is expanded in

a basis of H3(CY3), which, together with the complex structure deformations, the dual

of B, and the dilaton φ, fill out h(1,2) + 1 hypermultiplets, and we omit them from our

8The above Ansatz includes only zero modes, and therefore we omitted the off-diagonal components

which involve one-forms on CY3, since they lead to massive excitations.
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further discussion.9 We do keep the gravity multiplet which includes the graviton and the

graviphoton A0, and the h(1,1) vector multiplets which include the vector fields Ãi and the

complex scalars xi = bi + ivi. Note that compared to the five-dimensional case discussed in

section 2.1, there is an additional vector multiplet and the Kähler moduli are complexified.

Thus, in the four-dimensional effective action all Kähler moduli, including the Calabi-Yau

volume, are in vector multiplets.

In the compactification process it is useful to keep track of the isometries of the internal

manifold X7 since they become gauge transformations in the effective theory. Let us first

recall the situation for compactifications on CY3 × S1. In this case there is an isometry

corresponding to constant shifts z → z + ǫ of the S1 coordinate. Promoting the parameter

to be space-time dependent ǫ → ǫ(xµ), the compactification Ansatz given in eqs. (2.31)

and (2.32) changes. Keeping Ĉ3 and the ten-dimensional line-element ds2
10 invariant induces

the local gauge transformations

A0 → A0 + dǫ , C̃3 → C̃3 − B ∧ dǫ , Ãi → Ãi − bidǫ . (2.33)

However, the fact that the fields C̃3 and Ãi transform is an artefact of the expansion (2.32)

and one can define the gauge-invariant fields

C3 = C̃3 + B ∧ A0 , Ai = Ãi + biA0 . (2.34)

In the case of a non-trivial fibration of the Calabi-Yau over the circle, as considered

in eq. (2.21), these fields are no longer invariant. However, the main property of eq. (2.34)

is that the transformations of C3 and Ai do not contain the derivative of the transforma-

tion parameter ǫ, and therefore we will keep the same definitions in the following. Using

eqs. (2.21) and (2.32) we can easily see that the fields Ai and bi arising from the expan-

sion of Ĉ3 acquire a non-trivial gauge transformation, but the transformation law of the

graviphoton is unchanged.

Exactly as for Ĉ3, we also need to keep J , defined in eq. (2.27), gauge-invariant.

Since the basis of (1, 1) forms ωi changes according to eq. (2.21), we need to assign a

transformation law similar to (2.10) also to the fields vi. Another way of saying this is that

our background is not invariant under arbitrary shifts of z, but, as shifts of z are gauge

symmetries, we must assign a transformation law to the vi. Altogether we thus have

A0 → A0 + dǫ , Ai → Ai − ǫM i
jA

j ,

vi → vi − ǫM i
jv

j , bi → bi − ǫM i
jb

j .
(2.35)

Note that unlike the N = 2 gauged supergravities encountered so far in string compacti-

fications, the symmetry (2.35) is not necessarily a Peccei-Quinn shift symmetry which is

usually gauged in these cases. Moreover, this gauge symmetry is generically spontaneously

broken due to the non-vanishing vacuum expectation values of the Kähler moduli vi.

9The couplings of the hypermultiplets in the N = 2 low energy effective action can be found, for example,

in [29, 13].
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In addition, the four-dimensional effective theory sees the remnant of the three-form

gauge invariance Ĉ3 → Ĉ3 + dΛ2 which is manifest in the action (2.1). Choosing Λ2 = ηiωi

and using (2.22) we obtain the following transformation laws

A0 → A0 , Ai → Ai + dηi + M i
jη

jA0 ,

vi → vi , bi → bi + M i
jη

j .
(2.36)

The parameters (ǫ, ηi) together form h(1,1) + 1 local gauge parameters. From the trans-

formations displayed in (2.35) and (2.36) we already see the non-Abelian character of the

gauge transformations when M 6= 0.

To derive the four-dimensional action we insert eqs. (2.31) and (2.32) into (2.1) and

perform the integrals over the internal manifold. Let us first concentrate on the last two

terms in the action (2.1), and postpone the compactification of the Ricci scalar to the end

of this section.

To make our task easier let us first compute the field strength F̂4 by taking the exterior

derivative of eq. (2.32). Using (2.22) and the definitions (2.34) we find

F̂4 = dĈ3 = (dC3 − B ∧ F 0) + H ∧ (dz − A0)

+ (F i − biF 0) ∧ ωi + Dbi ∧ ωi ∧ (dz − A0) + · · · ,
(2.37)

where we defined

F 0 = dA0 , F i = dAi − M i
j Aj ∧ A0 , Dbi = dbi − M i

j (Aj − bjA0) . (2.38)

The reason we have formally performed the expansion in the forms dz − A0 is that in

this basis the metric (2.31) is block diagonal, and therefore in computing (F̂4)
2 only the

square of the individual terms in (2.37) will appear and no mixed terms will be present.

Note that in four dimensions C3 is not a dynamical field and therefore we will discard its

contribution in the following. In general, a proper dualization should be performed, but

this has implications only on the hypermultiplet sector and is therefore not of interest for

us. With these things in mind we obtain

∫

X7

F̂4∧∗F̂4 = e−4ϕH3∧∗H3+4Kgij(F
i−biF 0)∧∗(F j−bjF 0)+4gijDbi∧∗Dbj+· · · , (2.39)

where the metric gij was defined in eq. (2.28) and ϕ denotes the four dimensional dilaton

defined as e−2ϕ = e−2φK. For the Chern-Simons term in (2.1) one finds after a straight-

forward but somewhat lengthy calculation

∫

X7

Ĉ3 ∧ F̂4 ∧ F̂4 = 3F i ∧ F jbkKijk − 3F i ∧ F 0bjbkKijk

+ F 0 ∧ F 0bibjbkKijk + 2Mk
i Ai ∧ Al ∧ F jKjkl ,

(2.40)

where Kijk are the Calabi-Yau intersection numbers defined in (2.5) which can also be

obtained from (2.23).
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Let us check explicitly that the individual terms in eq. (2.39) are invariant under the

gauge transformations (2.35) and (2.36). Under (2.35) the quantities defined in eq. (2.38)

transform as

δDbi = −ǫM i
jDbj , δF i = −ǫM i

jF
j , δF 0 = 0 . (2.41)

Together with the transformation (2.14) of the moduli space metric, this shows that the

terms in eq. (2.39) are (individually) invariant. Under the gauge transformation (2.36), the

covariant derivatives Dbi are invariant as can be checked from (2.38). The field strengths

F i, F 0 are not individually invariant, but the combinations

F̌ i = F i − biF 0 , (2.42)

which appear in (2.39), are invariant. This completes the proof of the gauge invariance of

the expression (2.39).

We can similarly check the gauge invariance of (2.40). For the transformation (2.35) it

follows straightforwardly from eq. (2.41) and the constraint (2.12) that each term in (2.40)

is invariant individually. To check the invariance under the transformation (2.36) is also

straightforward but a bit more tedious. The important difference to note is that the gauge

invariance (2.36) only holds for the sum of all the terms in eq. (2.40) but not for the

individual terms. We come back to this issue in section 2.4.

The next step is to compactify the Ricci scalar in the action (2.1). For CY3 × S1 the

answer is well known [23] and yields the kinetic terms for the moduli vi, a contribution to

the kinetic terms of the graviphoton A0 and the kinetic term for the dilaton. For the case

of a non-trivial fibration the moduli are charged under the isometry of the circle and the

corresponding gauge transformation is given in (2.35). This in turn leads to a coupling of

the moduli to the graviphoton and a scalar potential. The generic formulae for this case

are worked out in [28] and we can borrow some of their results. One finds

1

2

∫

X7

R̂ ∗ 1 =
1

2
R4 ∗ 1 − gijDvi ∧ ∗Dvj −KF 0 ∧ ∗F 0 − dϕ ∧ ∗dϕ − V . (2.43)

This is a straightforward generalization of the result obtained in CY3×S1 compactifications,

in that the derivatives for the charged moduli are replaced by covariant derivatives

Dvi = dvi + vjM i
jA

0 . (2.44)

The derivation of the scalar potential V is less obvious and an explicit calculation of the

internal Ricci scalar is necessary. Note that this gives in fact the only contribution to the

potential as eqs. (2.39) and (2.40) contain no terms without four-dimensional derivatives.

Let us therefore compute the scalar curvature for the internal part of the metric which can

be read off from (2.31)

Gint = e−2φ/3

(

Gmn(y, z) 0

0 e2φ

)

. (2.45)
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From the seven-dimensional point of view, the overall dilaton factor is irrelevant as this is

just a constant, but it will be important for the normalization of the potential. Using the

fact that the Ricci tensor of the Calabi-Yau slices vanishes we find

R7 = −e−4φ/3

[

∂z(G
mn∂zGmn) +

1

4
(Gmn∂zGmn)2 +

1

4
GmnGpq∂zGmp∂zGnq

]

. (2.46)

In order to proceed we split the metric into a background piece G0
mn, which is constant in

z, and the moduli dependent part ∆Gmn which does depend on z:

Gmn = G0
mn + ∆Gmn . (2.47)

As explained before, the fibration structure we consider is such that the complex structure

deformation sector is not influenced by the additional z direction, and we are only interested

in the dependence on the Kähler moduli vi. In complex coordinates they arise from the

(1, 1) components of the metric via

∆Gab̄ = −ivi(ωi)ab̄ , a, b̄ = 1, 2, 3 . (2.48)

Using eq. (2.21) we immediately find

∂z∆Gab̄ = −iviM j
i (ωj)ab̄ . (2.49)

From the fact that ωj is a harmonic (1, 1)-form on the Calabi-Yau threefold, one shows, fol-

lowing ref. [25], that Gab̄(ωj)ab̄ = i
2Kj/K, where eqs. (2.7) and (2.8) were used. Combining

this with eq. (2.49) gives

Gmn∂zGmn = KjklM
j
i vivkvl = 0 , (2.50)

as a consequence of the constraint (2.12). Therefore the only contribution to the four-

dimensional potential comes from the last term in (2.46). Inserting eq. (2.49) into eq. (2.46)

we arrive at
1

2

∫

X7

R7 = −1

4
e−4φ/3Mk

i M l
jv

ivj

∫

X7

ωk ∧ ∗ωl . (2.51)

Using eqs. (2.28) and (2.31), and taking into account the rescaling of the four-dimensional

metric, we finally obtain the potential (in the Einstein frame)

V =
1

K vivjMk
i M l

jgkl . (2.52)

2.4 Consistency with N = 2 supergravity

In order to check the consistency with N = 2 supergravity (reviewed in appendix A) we

have to write the resulting four-dimensional action in the general form (A.16). Putting

together eqs. (2.39), (2.40) and (2.43) we obtain the action in four dimensions for the

bosonic fields in the gravity and vector- multiplets

S =

∫

M4

[

1

2
R ∗ 1 − gijDxi ∧ ∗Dx̄j − V (2.53)

+
1

4
ImNIJF I ∧ ∗F J +

1

4
ReNIJF I ∧ F J − 1

6
M l

iKjklA
i ∧ Aj ∧ dAk

]

,
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where the metric gij was defined in (2.28). It is a special Kähler metric derived from the

Kähler potential given in (A.1) for the prepotential

F(X) = −1

6

KijkX
iXjXk

X0
. (2.54)

The XI , I = 0, . . . , h(1,1), are projective coordinates which are related to the scalar fields

via so-called special coordinates xi given by

xi =
Xi

X0
= bi + ivi , i = 1, . . . h(1,1) . (2.55)

The prepotential (2.54) also determines the gauge coupling matrix N via (A.3), and one

finds

ReN00 = −1

3
Kijkb

ibjbk , ReNi0 =
1

2
Kijkb

jbk , ReNij = −Kijkb
k ,

ImN00 = −K(1 + 4gijb
ibj) , ImNi0 = 4Kgijb

j , ImNij = −4Kgij .
(2.56)

The field strengths in eq. (2.53) are given by

F I = dAI +
1

2
f I

JKAJ ∧ AK , with f0
IJ = 0 = fk

ij , f j
i0 = −M j

i , (2.57)

while the covariant derivatives read

Dxi = dxi − ki
IA

I , with kj
0 = −xkM j

k , kj
i = M j

i . (2.58)

These holomorphic Killing vectors can be obtained via (A.11) from the Killing prepotentials

P0 = −xiM j
i Kj , Pi = M j

i Kj , (2.59)

where Kj = ∂jK is the first derivative of the Kähler potential. The consistency of the

non-Abelian gauge algebra can be checked in that eq. (A.14) is fulfilled and we have

[ki, kj ] = 0 = [k0, k0] , [ki, k0] = −M j
i kj , (2.60)

corresponding to a semi-direct sum of two Abelian sub-algebras.10 Finally, using (2.58) it

is easy to see that the potential (2.52) is consistent with (A.15).

Except for the last term in eq. (2.53) everything looks like a standard N = 2 gauged

supergravity as spelled out in ref. [31]. The last term is also known, and has to be introduced

in the action (in order to make it gauge-invariant) whenever the prepotential is not invariant

under the gauge transformations, but transforms into a second order polynomial in X with

real coefficients [32]. Inserting the transformation (2.36) into the definition of the projective

coordinates (2.55) we find that the prepotential (2.54) changes as

δηF = −1

2
ηiM l

iKljkX
jXk , (2.61)

10We thank the referee of this paper for pointing out that (2.60) is also a solvable Lie algebra (for a

definition see, for example, [30]).
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which is precisely of the form (A.17) with Cijk = 1
2M l

iKljk. Note that for the specific

structure constants given in eq. (2.57), the last term of eq. (A.18) vanishes, which explains

why such a term is absent from eq. (2.53).

Before we continue it is worthwhile to stress that the vector multiplet geometry on

the M-theory side specified by the prepotential (2.54) is exact, since the “dilaton” (the

radius of the M-theory circle) is part of a hypermultiplet, and therefore cannot correct this

geometry. The same holds for the gauging as specified in (2.58).

2.5 K3-fibred Calabi-Yau threefolds

So far our discussion was generic, in that we did not specify the intersection numbers Kijk

and the matrix M j
i . We did however assume that the seven-dimensional X7 is a fibred

product of a Calabi-Yau threefold CY3 over a circle, and that the CY3 is such that a

continuous isometry of the form (2.21) exists. In this section we discuss more concretely

the specific case of K3-fibred Calabi-Yau threefolds; type IIA string theory compactified

on such threefolds is dual to heterotic string theory compactified on K3 × T 2.

K3-fibred Calabi-Yau threefolds consist of K3 fibres over a P1 base [6]. The volume

of the base in string units is identified with the dilaton on the heterotic side. Furthermore,

two additional two-cycles in the K3, related to the heterotic torus, can be singled out.

Let us denote these three special cycles by 1, 2 and 3, while the rest of the two-cycles are

denoted by an index a. In the limit of a large P1 base (i.e. large heterotic dilaton) the

prepotential (2.54) becomes

F =
X1(X2X3 − XaXa)

X0
(2.62)

and so the only non-vanishing intersection numbers for the Calabi-Yau threefold are [6]

K123 = −1 , K1ab = 2δab , a, b = 4, . . . , h(1,1) . (2.63)

Inserting eq. (2.62) into eq. (A.1) and computing the corresponding Kähler metric one sees

that this factorizes and becomes the metric on the space

MV =
SU(1, 1)

U(1)
× SO(2, h(1,1) − 1)

SO(2) × SO(h(1,1) − 1)
. (2.64)

The first factor is spanned by the coordinate x1 which parameterizes the volume of the P1

base, while x2, x3 and xa span the second factor. We immediately see that MV has the

continuous isometry group SU(1, 1) × SO(2, h(1,1) − 1). As discussed above, in the same

limit the five dimensional vector multiplet moduli space has the continuous isometry group

SO(1, 1) × SO(1, h(1,1) − 2).

As a consequence, we expect that the constraint (2.12) has non-trivial solutions.

Indeed, solving eq. (2.12) for the torsion parameters M j
i , given the intersection num-

bers (2.63), we find that one can choose to express all matrix elements in terms of 1
2(h(1,1)−

1)(h(1,1) − 2) + 1 independent parameters

m2 ≡ M2
2 , ma ≡ M2

a , m3 ≡ M3
3 , m̃a ≡ M3

a , ma
b ≡ −M b

a , (2.65)
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where ma
b = −mb

a. The other matrix elements are then given by

Ma
2 =

1

2
m̃a , Ma

3 =
1

2
ma , Ma

a = −1

2
M1

1 =
1

2
(m2 + m3) ,

M2,3
1 = Ma

1 = M1
a = M1

2,3 = M3
2 = M2

3 = 0 .
(2.66)

Note that these solutions describe the mixing of SO(1, 1)× SO(1, h(1,1) − 2) into the gauge

symmetry, i.e, we have accounted for the most general monodromy allowed on the circle.

However, this is not the most general global symmetry of the four dimensional theory,

which can be as large as SU(1, 1) × SO(2, h(1,1) − 1). In section 3 we discuss how the

parameters in (2.66) are related to the dual heterotic background. Before we do so let us

return to the situation where the P1-base is not necessarily large.

2.6 Breaking the continuous isometry

So far our analysis assumed that the Calabi-Yau moduli space has a continuous isometry,

or in other words that Kijk are such that eq. (2.12) has a solution. As we saw this is

indeed the case for K3-fibred Calabi-Yau manifolds in the large P1 limit where the moduli

space has a continuous SO(1, h(1,1) − 2) symmetry. However, this symmetry is broken (for

example, by non-zero intersection numbers Kabc or K23a) to a discrete subgroup Γ(Z) =

SO(1, h(1,1)−2,Z) (which is the T-duality group of the heterotic string) for finite P1 volume.

As we discussed before, the only information that we can really specify at finite P1 volume

is an element γj
i ∈ Γ(Z), which rotates the (1, 1)-forms ωi as described in section 2.2. Of

course the absence of the continuous isometry also holds for compactifications on CY3×S1

without any monodromy; in this case the corresponding continuous symmetry is broken

to a discrete subgroup Γ′(Z), which is the T-duality group of the dual heterotic string on

K3× T 2. Furthermore in four dimensions type IIA world-sheet instantons also contribute

to the breaking of the continuous isometry.

Even though the continuous isometry of the Calabi-Yau moduli space is broken, we

want to argue that our M-theory backgrounds retain a subgroup of this isometry. The

key difference from the CY3 × S1 background is that the non-trivial monodromy has the

effect that in the four-dimensional effective action part of the would-be isometry (which is

indeed an isometry at infinite P1 volume) is gauged (see eqs. (2.35) and (2.36)). Since it is

part of a gauge symmetry, consistency requires that it must persist in the four-dimensional

effective action for any value of the parameters — and in particular for finite P1 volume.

To reiterate, this must be true even when the continuous symmetry is not present for the

theory without the monodromy, or in the five dimensional effective action.

In order to see in slightly more details how this happens let us first reconsider the

computation of the four-dimensional effective action performed in section 2.3. Without the

isometry in the Calabi-Yau moduli space the intersection numbers Kijk defined in eq. (2.5)

with ωi obeying eq. (2.21) are z-dependent and thus vary along the circle. Instead, it is the

intersection numbers K̂ijk defined in (2.23) that appear in the four-dimensional effective

action. Now they no longer coincide with the Kijk as was the case in the presence of

a Calabi-Yau isometry. Nevertheless, if we still require that the monodromy is evenly
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distributed along the circle, or in other words if we continue to impose (2.22) for constant

M j
i , then eq. (2.24) implies

M l
i K̂jkl + M l

jK̂kil + M l
kK̂ijl = 0 . (2.67)

Thus, the Ansatz (2.21) with constant M j
i implies the presence of an isometry in the moduli

space of X7 even though the isometry of the fibred Calabi-Yau manifold is broken. The

existence of this isometry can be viewed as a direct consequence of the gauge symmetry.

The KK-reduction of section 2.3 can be repeated, but now K̂ijk and the metric defined

by (2.28) appear. This metric coincides with the Calabi-Yau moduli space metric (2.6)

only for infinite P1, but differs for finite volume. Therefore the resulting four-dimensional

effective action receives small corrections at finite volume. However, these corrections

cannot lead to any qualitative changes, since already at large P1 volume all fields relevant

for the gauging are massive, and the corrections just shift their precise mass spectrum.

It would be worthwhile to compute the low energy effective action more explicitly and

check its consistency with N = 2 supergravity. Furthermore, arguments along the lines

of refs. [33, 34] should exist in order to argue that the gauged symmetry is also protected

against the breaking coming from the world-sheet instantons. We hope to return to these

issues elsewhere.

3. Heterotic string theory compactified on K3 × T
2 with T

2 fluxes

In this section we discuss the heterotic string compactified on K3×T 2 with the gauge fields

having non-trivial flux on the T 2. More specifically we show that the dual background is

related to the M-theory compactification discussed in the previous section. We begin by

reviewing the heterotic compactification in sections 3.1–3.4, and we present the details of

the duality map in section 3.5.

3.1 General properties

Consider heterotic string theory compactified on K3×T 2. In this subsection we analyze the

effect of turning on gauge flux on the T 2 in the low-energy supergravity theory. In particular

we want to show that turning on the flux breaks the corresponding gauge symmetry, giving

the gauge field a mass proportional to the flux.

In ten dimensions the spectrum of the heterotic string includes a 2-form field B and a

gauge field A with field strength F (in either the Spin(32) or the E8 × E8 gauge group).

The 3-form field strength involves not just the 2-form field, but rather it takes the form:

Hhet = dB − α′
het

4
ω3, (3.1)

where ω3 is the Chern-Simons form11

ω3 = tr

(

A ∧ dA +
2

3
A ∧ A ∧ A

)

. (3.2)

11There is also a gravitational Chern-Simons term in Hhet, which is of higher order in the Planck constant

and will not play a role in our discussion.
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The ten-dimensional action includes kinetic terms proportional to

[

−1

2
|Hhet|2 − α′

het

4
tr(F 2)

]

. (3.3)

Suppose that the compactification to six dimensions on K3 breaks the gauge group

such that it has a U(1)n factor, and consider a background where we turn on a flux for one

of the corresponding U(1) gauge fields Aa on the T 2 (a = 1, . . . , n),

∫

T 2

F a ≡ fa 6= 0. (3.4)

The six dimensional action includes a term proportional to

∫

R4×T 2

[

(

dB − α′
het

4
Aa ∧ F a

)2

+
α′

het

2
(F a)2

]

, (3.5)

such that the four dimensional action expanded around the flux background (3.4) includes

a term proportional to

∫

R4

[

(

db − α′
het

4
faAa

)2

+
α′

hetV (T 2)2

2
(F a)2

]

, (3.6)

where b is the scalar field arising from
∫

T 2 B, and V (T 2) is the volume of the T 2. Naively

the first term is not gauge-invariant, but in fact the gauge transformation (already in ten

dimensions) acts also on the 2-form field, and this transformation in four dimensions takes

the form Aa → Aa + dΛa, b → b +
α′

het
4 faΛa such that (3.6) is gauge-invariant.

Both from the form of (3.6) and from the form of the gauge transformation, we see

that the U(1) gauge symmetry is broken, since it acts non-linearly on the scalar field b. The

gauge field acquires a mass proportional to fa, and swallows the scalar field b by the Higgs

mechanism. Using (3.6) we see that the mass squared of the gauge field is proportional

to α′
hetf

2
a/V (T 2)2. In the action we wrote here we set many fields to zero, the full results

may be found in [17].

In the previous section we saw that a similar Higgs mechanism in M-theory arises from

the non-trivial fibration structure over the M-theory circle. In the following we argue why

it is indeed necessary to go to the M-theory description on the dual type IIA side when we

add the heterotic fluxes, and afterwards we make the correspondence between the M-theory

and the heterotic Higgsing more precise.

3.2 Mapping the masses

In order to map the Higgs mechanism described above to the type IIA side, we need to

compute the mass of the massive vector, and describe it in the language of the type IIA

string theory.

Let us first recall the mapping in the absence of fluxes between the heterotic string

and the type IIA string. On the heterotic side, the K3 manifold is taken to be a fibration

of T 2
f over some base B. On the type IIA side we have a Calabi-Yau manifold which is a
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fibration of some K̃3 over B (where we used fiber-wise the duality between the heterotic

string theory on T 4 and the type IIA string theory on K̃3).

The relations between the parameters of the two theories are (denoting the volume of

a cycle by V , and not writing down all the numerical constants):

The mapping of the four dimensional Planck scales gives

V (K3)V (T 2)/g2
hl8h = V (K̃3)V (B)/g2

IIl
8
II. (3.7)

For the mapping of the type IIA string to a wrapped heterotic five-brane we have

V (T 2)V (T 2
f )/g2

hl6h = 1/l2II. (3.8)

The mapping of the heterotic string to a wrapped NS5-brane yields

1/l2h = V (K̃3)/g2
IIl

6
II. (3.9)

Finally, the integral of the heterotic B-field on the T 2 maps to the integral of the type

IIA B-field on some 2-cycle W in K̃3, leading to

V (T 2)/l2h = V (W )/l2II. (3.10)

Above we found that on the heterotic side the mass of the vector field that becomes

massive after we turn on the flux is

m2 = (fa)2l2h/V (T 2)2. (3.11)

Translating this into type IIA string theory using the equations above, we find that the

mass can be written as

m2 = (fa)2V (K̃3)/(V (W )2g2
IIl

2
II). (3.12)

In particular, it involves a negative power of the type IIA string coupling, implying that

it is not a perturbative state on the type IIA side. Rather, since its mass is proportional

to the D0-brane mass MD0 ≃ 1/gIIlII, it involves when lifted to M-theory some non-

trivial momentum on the M-theory circle. Thus, we cannot describe this flux purely in the

language of type IIA supergravity (the massive gauge field is too massive to be included

in the low energy IIA description). The dual configuration must involve, when lifted to

M-theory, non-trivial dependence on the M-theory circle.

3.3 The flux as a monodromy

We claim that the correct description of this flux on the type IIA side is given by the

non-trivial fibration of the Calabi-Yau over the M-theory circle, described in the previous

section. In order to make this identification more precise, let us move up one dimension,

and consider the heterotic string theory on K3×S1, which is dual to M-theory on a Calabi-

Yau manifold (this is simply the limit of the duality discussed in the previous subsection,

when one of the heterotic circles is taken to be large). We will call the coordinate on this

circle x5, and denote the coordinate on the additional circle which we use to go down to four

dimensions by x4 (this may be identified with the z coordinate which we used in section 2).
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In the K3×S1 compactification, each ten-dimensional gauge field Aa
µ leads to a scalar

field Aa
5. One way to describe the flux that we are interested in is by taking this scalar

field to have a non-trivial monodromy around the additional circle in the x4 direction,

Aa
5 = cfax4 ⇒ Aa

5(x
4 + 2πR4) ≃ Aa

5(x
4) + 2πcfaR4 (3.13)

for some constant c. Note that the low-energy supergravity is invariant under any shift

in the scalar field Aa
5; however, in the full heterotic string theory, due to the presence of

charged states carrying momentum on the x5 circle, there is only a discrete periodicity of the

field Aa
5. Equation (3.13) may be interpreted as saying that when we go around the x4 circle,

Aa
5 comes back to itself up to a shift by an integer multiple of its period (proportional to fa).

In this language, we can think of the flux as a special case of a monodromy in the

T-duality group. Recall that the heterotic string theory on K3 × S1 has n U(1) vector

fields Aa
µ coming from the ten-dimensional gauge group, and three additional vector fields

coming from gµ5, Bµ5 and the dual of Bµν . One combination of the three latter fields

is in the graviton multiplet, while the other n
(5)
V = n + 2 fields are in vector multiplets.

Each of the vector multiplets contains a real scalar field; these n
(5)
V fields are Aa

5, the

radius of the x5 circle, and the heterotic dilaton, and they span the manifold [22, 24]

SO(1, n
(5)
V −1)/SO(n

(5)
V −1)×R. The low-energy supergravity action is invariant under an

SO(1, n
(5)
V − 1) × SO(1, 1) symmetry, where the first factor rotates the scalars (and all the

vector fields except for the dual of Bµν), while the second factor shifts the dilaton. In the

full heterotic string theory, only an SO(1, n
(5)
V − 1,Z) subgroup of this group is an exact

symmetry — this is the T-duality group of the heterotic string on a circle. This group

includes in particular the shifts in Aa
5 described in the previous paragraph. Thus, these

shifts are a special case of a general SO(1, n
(5)
V − 1,Z) monodromy, where as we go around

the circle the theory comes back to itself up to some SO(1, n
(5)
V − 1,Z) transformation.

It is now clear, that in order to map the flux to the M-theory side, we need to consider

backgrounds in which M-theory on a Calabi-Yau comes back to itself (as we go around the

circle) up to some element of SO(1, n
(5)
V − 1,Z). These are precisely the backgrounds we

considered in the previous section, so we claim that these are the correct type II duals of

the heterotic compactification with flux. In the next two subsections we will check this

proposal in detail, by mapping the four dimensional effective actions of the two theories.

3.4 The low-energy effective action

Let us briefly recall the low energy effective action for heterotic string compactifications

on K3× T 2 with non-trivial background fluxes, which was derived in [17]. In the spirit of

the present paper we only focus on the vector multiplets and only review the low energy

theory for fluxes of the gauge fields on T 2, as they lead to a non-Abelian gauge group

in the effective four-dimensional theory. The main features of the ungauged theory are

summarized in appendix B.

The nv = n+3 four dimensional heterotic vector multiplets include the complex scalar

fields xi = (s, u, t, na), a = 4, . . . , nv which span the symmetric space (B.1), where s denotes

the dilaton/axion, t and u are the T 2 moduli and na denotes the scalars arising from the
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Wilson lines of the original heterotic gauge fields in the T 2 directions. The latter combine

with the four-dimensional gauge fields Aa which also originate from the ten-dimensional

heterotic gauge fields. From the metric and the B-field we obtain four Kaluza-Klein gauge

bosons A0, . . . , A3 which play the role of the graviphoton and the superpartners of s, t and

u.12 In the absence of fluxes the gauge group is the Abelian group [U(1)](nv+1).

When we turn on background fluxes of the form
∫

T 2

F a = fa , (3.14)

the four dimensional gauge group becomes non-Abelian (in the sense that different gauge

transformations no longer commute), as in the general gauged supergravities discussed in

the appendix. Note that this non-Abelian symmetry has nothing to do with the original

E8 ×E8 or SO(32) gauge symmetry in ten dimensions; it involves only fields in the Cartan

subgroup of the original gauge group.

The action computed in [17] is13

Shet =

∫
[

1

2
R ∗ 1 +

1

4
IIJF I ∧ ∗F J +

1

4
RIJF I ∧ F J − gijDxi ∧ ∗Dx̄̄ − V

]

, (3.15)

which slightly differs from the action given in (A.16). The point is that from the heterotic

viewpoint a different symplectic basis is more natural. More precisely, the gauge field

A1 is dualized relative to the formalism used in the appendix, which is the one we use

for M-theory. In this basis the prepotential F does not exist but its derivatives are well

defined [35 – 37]. So let us carefully go through the terms.

The non-trivial covariant derivatives in (3.15) when we turn on the fluxes are given by

Dt = ∂t −
√

2nafaA1 + faAa ,

Dna = ∂na − 1√
2

fa(A0 + uA1) ,
(3.16)

which, using (A.12), corresponds to the Killing vectors

k0 =
1√
2

fa∂a , k1 =
1√
2

fau∂a +
√

2nafa∂t , ka = −fa∂t . (3.17)

Finally, the metric gij in (3.15) is special Kähler and can be derived from (B.8).

As explained in appendix B, the gauge couplings IIJ , RIJ , which are given in (B.7),

cannot be derived directly from (A.3). In the ungauged case (fa = 0) one needs to perform

an electric-magnetic duality transformation on the symplectic vector XI ,FI given by X1 →
−F1 and F1 → X1. Using (A.9) this transforms the gauge couplings IIJ , RIJ into a form

consistent with (A.2) and (A.3) while the Kähler potential is left invariant. For the gauged

case (fa 6= 0) this transformation is not straightforward and generates precisely a term of

the form (A.18) as we will see in the next subsection.

12The details can be found in reference [17].
13Compared to [17] we have rescaled the metric by a factor 1/2 and the gauge fields by a factor 1/

√
2 in

order to agree with the conventions we use in type IIA compactifications.
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The non-Abelian field strengths in the heterotic basis are given by

F 0 = dA0 ,

F 1 = dA1 ,

F 2 = dA2 + faAa ∧ A1 , (3.18)

F 3 = dA3 − faAa ∧ A0 ,

F a = dAa − faA0 ∧ A1 .

The equations can be understood as follows: recall that (when we do not turn on any

non-trivial fields) A0 and A1 are linear combinations of gµ4 and gµ5, while A2 and A3 are

linear combinations of Bµ4 and Bµ5. The non-Abelian terms in F 2 and F 3 follow from (3.5)

when including off-diagonal metric elements in the contractions. The non-Abelian term in

F a arises just from off-diagonal contractions in the standard six dimensional kinetic term

of F a. By comparing with (A.13) we see that the non-vanishing structure constants are

f2
a1 = −f3

a0 = fa
01 = fa . (3.19)

Note that there is a slight subtlety when one takes the Killing vectors as given in (3.17)

and checks the consistency of (3.19) with (A.14). The reason is that the structure con-

stants (3.19) correspond to a Lie algebra generated by (T0, T1, T2, T3, Ta) obeying

[T0, T1] = faTa , [T0, Ta] = faT3 , [Ta, T1] = faT2 , (3.20)

with all the other commutators vanishing. We see that T2 and T3 are central elements of

the algebra and therefore can consistently be set to zero. This is precisely what happened

in our case in that the Killing vectors k2 and k3 are vanishing in (3.16), and therefore the

last two commutators in (3.20) are zero even though the corresponding structure constants

are non-zero. This situation is encountered frequently in gauged supergravities, see for

example [38, 39].14

Finally, the potential in the action (3.15) is given by the standard formula (A.15) with

the Killing vectors (3.17) inserted.

3.5 Comparison to M-theory

In this section we wish to compare the heterotic flux compactification derived in the pre-

vious subsections, with the M-theory compactification of the previous section. For this we

have to remember that in the ungauged case the map between heterotic and type IIA theo-

ries involves the non-trivial symplectic rotation (B.11). On the gauge fields this translates

into the map

A0
het ≡ −A2

IIA ,

A1
het ≡ A0

IIA ,

14We thank Marco Zagermann for educating us on this subject and the referee of this paper for pointing

out that for T2 = T3 = 0 (3.20) is also a nilpotent Lie algebra [30].
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A2
het ≡ A3

IIA , (3.21)

A3
het ≡ Ã1

IIA ,

Aa
het ≡

√
2Aa

IIA ,

where Ã1 denotes the electric-magnetic dual of the vector field A1 which appears in the

type IIA compactification.

In order to compare the low-energy effective actions, we need to insert the M j
i into

eq. (2.58) and compare the resulting covariant derivatives and Killing vectors to the het-

erotic side as given in (3.17). We immediately see that there is no perfect match between

all the M-theory parameters and the heterotic fluxes that we discussed thus far, and we

will return to this point later.

However, let us first see for which subset of the M-theory torsion parameters, the

heterotic flux can be recovered. Indeed, choosing

m2 = m3 = ma = ma
b = 0 , (3.22)

and leaving only m̃a 6= 0 in eq. (2.58) results in the non-trivial covariant derivatives

Dµx3 = ∂µx3 + m̃a(x
aA0

µ − Aa
µ) ,

Dµxa = ∂µxa +
1

2
m̃a(x

2A0
µ − A2

µ) ,
(3.23)

or equivalently the Killing vectors

k3
0 = −xam̃a , ka

0 = −1

2
x2m̃a , 2ka

2 = k3
a = m̃a . (3.24)

Comparison with eq. (3.17) together with the identifications (B.10) and (3.21) shows a

perfect match if we identify

m̃a|IIA = −
√

2fa|heterotic . (3.25)

We can similarly compare the field strengths. Inserting eq. (3.22) into (2.38) we arrive

at
F 3 = dA3 + m̃aA

0 ∧ Aa ,

F a = dAa − 1

2
m̃aA

0 ∧ A2 .
(3.26)

Comparing with eq. (3.18) using eqs. (3.25) and (3.21) we see that the field strengths F 3

and F a above precisely correspond to F 2 and F a on the heterotic side. However, F 1 on the

type IIA/M-theory side is Abelian while its correspondent (via (3.21)), F 3, on the heterotic

side is non-Abelian. On the other hand the M-theory side has an additional term (the last

term in (2.53)) in the low energy effective action. The reason for this mismatch is the fact

that the two actions are computed in different symplectic frames. In the ungauged case

(i.e. for m̃a = 0) one easily identifies a symplectic rotation which connects the two frames.

In the gauged case (i.e. for m̃a 6= 0) this is less straightforward and will occupy us for the

rest of this section.15

15The following discussion should be straightforward in the framework of gauged supergravity as given

in [40].
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Let us first recall that the presence of the last term in eq. (2.53) was due to the fact that

the prepotential (2.54) was not invariant under the gauge transformation (2.36). However

in the heterotic frame all terms in eq. (3.15) are invariant and this term is absent. For the

choice of parameters (3.22) the last term in eq. (2.53) becomes (up to a total derivative)

−1

2
m̃aA

2 ∧ Aa ∧ dA1 . (3.27)

In order to have the two sides match we have to exchange the gauge field A1 with its

magnetic dual.16 This is indeed possible as the gauge field A1 appears only via its (Abelian)

field strength F 1 = dA1 as can be seen from eqs. (2.53) and (3.27). The easiest way to see

how to do the dualization is to add a Lagrange multiplier −1
2F 1 ∧ dÃ1 which enforces the

Bianchi identity of F 1, and Ã1 will become the magnetic dual of the gauge field A1. The

equation of motion for F 1 then reads

1

2
ImN1J ∗ F J +

1

2
ReN1JF J − 1

2
m̃aA2 ∧ Aa − 1

2
dÃ1 = 0 . (3.28)

Defining now the magnetic dual field strength G1 as

G1 = dÃ1 + m̃aA2 ∧ Aa , (3.29)

the equation of motion for F 1 becomes

1

2
G1 =

1

2
ImN1J ∗ F J +

1

2
ReN1JF J ≡ ∂LN=2

∂F 1
, (3.30)

where LN=2 denotes the generic N = 2 Lagrangian (A.16). This equation is precisely the

definition of magnetic dual field strength in N = 2 supergravities (A.4) and from here on we

can apply the general dualization procedure and transform the matrix of gauge couplings

N as in (A.9) with the matrices U , V , Z and W chosen such that F 1 → G1 in (A.6).

Clearly, now G1 defined in eq. (3.29) can be mapped to the heterotic field strength F 3

from eq. (3.18), via eqs. (3.21) and (3.25). This ends the proof that the low energy theories

obtained from compactifying heterotic strings on K3× T 2 with fluxes turned on along T 2

and from compactifying M-theory on a seven-dimensional manifold with SU(3) structure

with only the fluxes m̃a non-vanishing, are indeed the same.

So far we discussed the duality for the parameter choice (3.22). However, our discussion

in the previous section makes it clear that all the parameters M i
j on the M-theory side,

which give rise to consistent backgrounds in the full M-theory,17 correspond to SO(1, n
(5)
V −

1,Z) monodromies, and they can be described by such monodromies on the heterotic side

as well. The specific monodromy we discussed above is simple on the heterotic side since

it does not involve the metric, but it is just a shift of the Wilson lines A
(i)
5 around the

torus T n that they live on. Monodromies in an SO(n,Z) subgroup of SO(1, n
(5)
V − 1,Z)

may be identified as SL(n,Z) transformations on this torus, which mix the various gauge

16Recall that already in six dimensions, the duality between heterotic string theory on T 4 and type IIA

string theory on K3 involves a dualization of the 2-form field.
17Namely, eM must be a member of the discrete U-duality group.
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fields and scalars; these were denoted by Ma
b above. Generic monodromies (involving

m2, m3 and ma) do not have a purely geometrical description [41]. For instance, the ma

parameters are related by a T-duality (inverting the radius of one of the circles) to the m̃a

parameters, so they may be viewed as having a variation of the heterotic gauge fields Aa

(similar to (3.13)) along the T-dual circle. However, this “T-dual flux” does not have a

geometrical description in the original heterotic language. Finally note that a background

with m2 + m3 6= 0 is not consistent as it involves a twist with an element of SO(1, 1,Z)

which is not part of the U-duality group in five dimensions. This can also be seen from the

heterotic side as it would make the heterotic dilaton charged, which has not been observed

so far in perturbation theory.

4. Conclusions

In this paper we studied M-theory compactifications on seven-dimensional manifolds with

SU(3)-structure. Specifically we considered a class of such manifolds which can be seen

as Calabi-Yau threefolds fibred over a circle. The fibration structure is determined by a

specific twist of the second cohomology of the Calabi-Yau as we go around the circle. The

consistency of the procedure requires that a discrete isometry in the Calabi-Yau moduli

space exists (which is an element of the U-duality group of M-theory compactified on

the Calabi-Yau manifold). This is guaranteed for K3-fibered Calabi-Yau manifolds which

correspond to backgrounds that are dual to the heterotic string compactified on K3× T 2.

Since in such compactifications the second cohomology of the Calabi-Yau manifold

governs the vector multiplet sector, the twisting leads to a gauged supergravity where a

subset of the isometries of the vector multiplet moduli space are promoted to local gauge

symmetries. A novel feature is that the Kähler moduli are charged, and not only their

axionic superpartners as it usually happens in N = 2 string compactifications. Moreover

this gauging turns out to be non-Abelian which so far had not been obtained in (smooth)

compactifications of type IIA string theory or M-theory.

The fact that this gauging should exist is expected from the heterotic — type IIA

duality. In heterotic N = 2 backgrounds arising from K3 × T 2 compactifications with

specific background fluxes only the vector multiplets get charged and the potential has no

dependence on the hypermultiplets. However, viewed from the dual type IIA perspective,

the masses of the vector fields contain negative powers of the type IIA string coupling.

Therefore, in order to consistently keep such states in the effective theory and at the same

time ignore the KK states, one has to make sure that the type IIA string coupling is

large relative to the size of the Calabi-Yau manifold. This forced us into the M-theory

regime, and indeed the dual of the heterotic backgrounds were found among the M-theory

backgrounds described above.

The general twisted compactification on the M-theory side contains additional param-

eters which do not map to fluxes on the heterotic side. However, since we can interpret all

such compactifications as twists of the five dimensional theory (obtained from M-theory on

the Calabi-Yau, or equivalently from the heterotic string theory on K3×S1) by an element

of the heterotic T-duality group, they can all be described as T-folds on the heterotic side.
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It would be interesting to study these backgrounds further; work along these lines is in

progress [41].
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A. Vector multiplets coupled to N = 2 supergravity

This appendix is a short review of N = 2 supergravity in four dimensions [32, 31]. A generic

spectrum contains the gravitational multiplet, nV vector multiplets, nH hypermultiplets

and nT vector multiplets. In this paper we are interested only in the vector multiplet sector

and therefore we discard the hyper- and tensor-multiplets.

The vector multiplets contain nV complex scalars xi, i = 1, . . . , nV , which span a

special Kähler manifold MV . This implies that the Kähler potential K is not an arbitrary

real function but is determined in terms of a holomorphic prepotential F according to [32]

K = − ln
[

iX̄I(x̄)FI(X) − iXI(x)F̄I(X̄)
]

. (A.1)

The XI , I = 0, . . . , nV are (nV + 1) holomorphic functions of the scalars xi, and FI ab-

breviates the derivative, i.e. FI ≡ ∂F(X)
∂XI . Furthermore F(X) is a homogeneous function of

degree 2 in XI , i.e. XIFI = 2F .

The bosonic part of the (ungauged) N = 2 action for vector multiplets is given by

S =

∫
[

1

2
R∗1 − gīdxi ∧ ∗dx̄̄ +

1

4
ImNIJF I ∧ ∗F J +

1

4
ReNIJF I ∧ F J

]

, (A.2)
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where gī = ∂i∂̄K. In the ungauged case the field strengths are Abelian, F I = dAI , and

the matrix of gauge couplings is given by

NIJ = F̄IJ + 2i
ImFIKImFJLXKXL

ImFLKXKXL
. (A.3)

The equations of motion of the action (A.2) are invariant under generalized electric-

magnetic duality transformations. From (A.2) one derives the equations of motion

∂L
∂AI

=
1

2
dGI = 0 , GI ≡ 2

∂L
∂F I

= ReNIJF J + ImNIJ ∗ F J , (A.4)

while the Bianchi identities read

dF I = 0 . (A.5)

These equations are invariant under the generalized duality rotations18

F I → U I
J F J + ZIJ GJ ,

GI → VI
J GJ + WIJ F J , (A.6)

where U , V , W and Z are constant, real, (nV + 1) × (nV + 1) matrices which obey

UTV − WTZ = V TU − ZTW = 1 ,

UTW = WTU , ZTV = V TZ . (A.7)

Together they form the (2nV + 2) × (2nV + 2) symplectic matrix

O =

(

U Z

W V

)

. (A.8)

Thus (F I , GI) form a (2nV + 2) symplectic vector. Similarly (XI ,FI) enjoy the same

transformation properties and transform as a symplectic vector under (A.6). The Kähler

potential (A.1) is invariant under this symplectic transformation, while the matrix N
transforms according to

N → (V N + W ) (U + ZN )−1 . (A.9)

The isometries of the scalar manifold MV are global invariances of the scalar field

sector, which can be “gauged” by mixing them with the local symmetries. These isometries

are generated by holomorphic Killing vectors ki
I(x) via

δxi = ΛIki
I(x) . (A.10)

The ki
I(x) satisfy the Killing equation which in N = 2 supergravity can be solved in terms

of a Killing prepotential PI

ki
I(x) = gij̄∂j̄PI . (A.11)

18This is often stated in terms of the self-dual and anti-self-dual part of the field strength F±J and the

dual quantities G+
I ≡ NIJF+J , G−

I ≡ N̄IJF−J .
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Gauging the isometries (A.10) requires the replacement of ordinary derivatives by covariant

derivatives in the action (A.2)

∂µxi → Dµxi = ∂µxi − ki
IA

I
µ , (A.12)

and the field strengths take the form

F I = dAI + f I
JKAJ ∧ AK . (A.13)

Consistency requires
[

kI , kJ

]

= fL
IJ kL , (A.14)

where kI = kj
I∂j . Furthermore the potential

V = 2eKXIX̄Jgı̄j kı̄
Ik

j
J (A.15)

has to be added to the action in order to preserve supersymmetry.19 The bosonic part of

the action of gauged N = 2 supergravity is then given by

S =

∫ [

1

2
R∗1 − gīDxi ∧ ∗Dx̄̄ +

1

4
ImNIJF I ∧ ∗F J +

1

4
ReNIJF I ∧ F J − V

]

. (A.16)

The symplectic invariance of the ungauged theory is generically broken since the action

now explicitly depends on the gauge potentials AI through the covariant derivatives Dxi

and the non-Abelian field strengths F I .

There is yet a further generalization of the above setup which was discussed in [32].

The isometries considered above need not leave the prepotential F invariant. For example,

consider an isometry which leads to a change in the prepotential of the type

δF = ΛICIJKXJXK , (A.17)

for some real parameters CIJK . Obviously, the imaginary part of the second derivative of

this variation vanishes. From its definition (A.3) we see that the imaginary part of the

gauge coupling matrix ImN is left invariant. ReN changes however, and so the action as

defined in (A.16) is not invariant. In order to restore gauge invariance the following term

has to be added to the action [32]

S → S +

∫

1

3
CIJKAI ∧ AJ ∧

(

dAK − 3

8
fK
LMAL ∧ AM

)

. (A.18)

B. The vector multiplet sector of heterotic string compactifications on

K3 × T
2

In this appendix we review the structure of the vector multiplet sector of heterotic strings

compactified on K3 × T 2, following [17]. For this setup, the vector multiplet sector is

19Note the factor 2 in front of the potential compared to [31] which comes from the different normalization

which we use in the action (A.16).
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directly connected to the T 2 part of the compactification and the K3 factor only breaks

supersymmetry and may reduce the total number of vector multiplets. Therefore, for our

purposes studying the T 2 step will be enough. The initial non-Abelian gauge symmetry of

the heterotic string is in general broken spontaneously to the maximal Abelian subgroup

and therefore we consider the resulting theory to be N = 2 supergravity coupled to an

arbitrary number nv of Abelian vector multiplets.

The vector fields in the vector multiplets have two origins: first they can come from

gauge fields in ten dimensions (and their number is arbitrary) and second they arise as KK

vector fields on the torus. In the last class we have precisely four vector fields, two from the

internal components of the metric — which we denote A0 and A1 — and two from the B-

field — which we denote A2 and A3. One of these vector fields, or some combination of them

will be the graviphoton, while the rest will sit in vector multiplets. The vector fields from

the first class we denote as Aa (a = 4, . . . , nv), and they are all part of vector multiplets.

The scalar fields in the vector multiplets span the coset space

MV =
SU(1, 1)

U(1)
⊗ SO(2, nv − 1)

SO(2) × SO(nv − 1)
. (B.1)

The factor SU(1, 1)/U(1) corresponds to the dilaton and its superpartner, the axion dual

to the four-dimensional B-field, while the second factor describes the scalar fields coming

from the T 2 moduli (including the internal B-field) and from the internal components

of the ten-dimensional gauge fields. These fields combine into the complex scalar fields

xi = (s, u, t, na), a = 4, . . . , nv, with s being the heterotic dilaton

s =
a

2
− i

2
e−φ , (B.2)

while the rest are given implicitly by

Aa
1 =

√
2
na − n̄a

u − ū
, Aa

2 =
√

2
ūna − un̄a

u − ū
,

B12 =
1

2

[

(t + t̄) − (n + n̄)a(n − n̄)a

u − ū

]

, (B.3)

√
G = − i

2

[

(t − t̄) − (n − n̄)a(n − n̄)a

u − ū

]

,

G11 =
2i

u − ū

√
G , G12 = i

u + ū

u − ū

√
G ,

where Aa
1,2 denote the internal components of the gauge fields, B12 is the internal B-field,

while G11, G12 and G stand for the metric on the torus and for its determinant, respectively.

From the T 2 compactification point of view, the dynamics of these fields is naturally

described in terms of a SO(2, nv − 1) matrix M IJ which is given by

M =







G−1 −G−1B̂ −G−1A

−B̂TG−1 G + AT A + B̂TG−1B̂ A + B̂TG−1A

−AT G−1 AT + AT G−1B̂ 1nv−3 + AT G−1A






, (B.4)
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where B̂ij = Bij + 1
2Aa

i A
a
j with indices i, j labeling the T 2 directions. The matrix M as

defined above leaves invariant the SO(2, nv − 1) metric

η =







0 12 0

12 0 0

0 0 1nv−3






(B.5)

in that M IJηJKMKL = ηIL. Then, the kinetic terms of the moduli are given by

Lkin = ∂µM IJ∂µ(M−1)IJ , (B.6)

while the gauge kinetic function takes the form

IIJ ≡ ImNIJ =
s − s̄

2i
(M−1)IJ , RIJ ≡ ReNIJ = −s + s̄

2
ηIJ . (B.7)

The connection to N = 2 supergravity is not obvious in the above formulation. More-

over, it turns out that that the natural symplectic basis in this case is one where no

prepotential exists [35 – 37] and so the formulae of appendix A, and in particular the defi-

nition of the gauge coupling matrix (A.3), do not directly apply. However one can explicitly

compute (B.6) using (B.4) and (B.3) and show that these kinetic terms can be derived from

the Kähler potential

K = − ln [i(s̄ − s) ((u − ū)(t − t̄) − (n − n̄)a(n − n̄)a)] . (B.8)

Moreover one can show that using the general formalism of [31] the gauge coupling ma-

trix (B.7) can be obtained form the following holomorphic vector

(

XI | FI

)

=
(

−u, 1, t, ut − nana,
√

2na | − st, −s(ut − nana), su, −s, −
√

2sn
)

,

(B.9)

while, obviously, using (A.1) this reproduces the Kähler potential (B.8). Alternatively, we

can start from the type IIA prepotential (2.62) with the projective coordinates given by

X0 = 1 , X1 = s , X2 = u , X3 = t , Xa = na . (B.10)

Using (A.3), one then computes the gauge coupling matrix N . To go to the heterotic

symplectic basis (B.9) we perform the symplectic rotation with the matrices U, V, W, Z

in (A.8) given by

U =

















0 0 −1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0
√

2 1nv−3

















, V =



















0 0 −1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1√
2
1nv−3



















(B.11)

Z = −W =

















0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0nv−3

















.
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Note that these matrices are precisely the ones which transform the holomorphic section

derived from the prepotential (2.62) and (B.10) into (B.9). Moreover, using the trans-

formation of the gauge coupling matrix (A.9) it is completely straightforward, but a bit

tedious, to show that the gauge coupling matrix precisely reproduces (B.7). Finally, let us

observe that since the matrices Z and W are non-vanishing this transformation is intrin-

sically a non-perturbative one in that it exchanges the gauge field A1 with its magnetic

dual, followed by certain relabelings and rescalings.
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